
Eur. Phys. J. C 48, 523–530 (2006) THE EUROPEAN
PHYSICAL JOURNAL C

DOI 10.1140/epjc/s10052-006-0031-7

Regular Article – Theoretical Physics

Renormalisation of composite operators in lattice perturbation
theory with clover fermions: non-forward matrix elements
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Abstract. We consider the renormalisation of lattice QCD operators with one and two covariant deriva-
tives related to the first and second moments of generalised parton distributions and meson distribution
amplitudes. Employing the clover fermion action we calculate their non-forward quark matrix elements in
one-loop lattice perturbation theory. For some representations of the hypercubic group commonly used in
simulations we determine the sets of all possible mixing operators and compute the matrices of the renormal-
isation factors in one-loop approximation. We describe how tadpole improvement is applied to the results.

PACS. 11.15.Ha; 12.38.Bx; 12.38.Gc

1 Introduction

Many interesting observables in hadron physics, e.g. (mo-
ments of) generalised parton distributions (GPDs) [1–5]
or distribution amplitudes, can be computed from ma-
trix elements of local operators between hadron states.
(For an extensive review of GPDs see [6], for distribution
amplitudes see, e.g., [7, 8].) GPDs, in particular, have at-
tracted a lot of interest in recent years. They parametrise
a large class of hadronic correlators, including e.g. form
factors and the ordinary parton distribution functions.
Thus GPDs provide a formal framework to connect in-
formation from various inclusive, semi-inclusive and ex-
clusive reactions. Furthermore they give access to phys-
ical quantities which cannot be directly determined in
experiments, like e.g. the orbital angular momentum of
quarks and gluons in a nucleon (in a given scheme) and
the spatial distribution of the energy or spin density of
a fast moving hadron in the transverse plane. On the
other hand, direct experimental information is limited
and additional input is required to obtain a more com-
plete knowledge of GPDs. One important source is lattice
QCD, which can provide the relevant hadronic matrix
elements [9–13].
Compared with moments of ordinary parton distribu-

tions, the specific difficulty in the treatment of moments of
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GPDs and distribution amplitudes lies in the fact that the
required matrix elements of local operators are no longer
forward matrix elements. In general, this circumstance
complicates the pattern of mixing under renormalisation,
and more extended investigations become necessary.
In a recent publication [14] we have calculated the non-

forward quark matrix elements needed for the renormali-
sation of quark–antiquark operators with two derivatives,
which determine the second moments of GPDs, and we
have discussed the mixing problem in detail. This calcula-
tion was performed in one-loop lattice perturbation theory
for the Wilson fermion action.
In the present paper we extend our perturbative cal-

culations to improved fermions using the Sheikholeslami–
Wohlert (clover) action [15] for improving the vertices. We
calculate renormalisation factors, but no improvement co-
efficients. While the general framework is of course the
same as for Wilson fermions, the additional clover term in
the action leads to a considerable complication of the cal-
culations. A preliminary account of our work has already
been given in [16]. Note, however, that a few misprints
in [16] will be corrected here.
Let us fix the notation used in our perturbative calcula-

tions. We work in Euclidean space and employ the Wilson
gauge action together with clover fermions such that the
total action is given by

Slatt = SSW,F+SW,G . (1)
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The fermionic part SSW,F has the form [15]

SSW,F = 4ra
3
∑

x

ψ̄(x)ψ(x)

−
a3

2

∑

x,µ

[
ψ̄(x)(r−γµ)Ux,µψ(x+aµ̂)

+ ψ̄(x+aµ̂)(r+γµ)U
†
x,µψ(x)

]

− i
a5 g csw

8

∑

x,µ,ν

ψ̄(x)[γµ, γν ]F
clover
µν ψ(x) , (2)

written in terms of dimensionful massless fermion fields
ψ(x). Here a denotes the lattice spacing and the sums run
over all lattice sites x and directions µ, ν. All other indices
are suppressed. F cloverµν is the standard “clover-leaf” form
of the lattice field strength (see, e.g., Appendix D in [17]).
The coupling strength of the improvement term is given by
csw. The link matrices Ux,µ are related to the gauge field
Aµ(x) by

Ux,µ = exp [igaAµ(x)] , Aµ(x) = T
cAcµ(x) , (3)

where g is the bare gauge coupling and the T c are the
generators of the SU(3) algebra. The gauge action for the
gluon field Aµ(x) is

SW,G =
6

g2

∑

x,µ<ν

[
1−
1

6
Tr
(
Ux,µν+U

†
x,µν

)]
, (4)

with

Ux,µν = Ux,µUx+aµ̂,νU
†
x+aν̂,µU

†
x,ν . (5)

In a perturbative calculation the investigated operators
are considered between off-shell quark states. Our calcula-
tions are performed in Feynman gauge; the final numbers
will be presented for the Wilson parameter r = 1, but for
arbitrary values of csw.
On the lattice the operators are classified according to

the irreducible representations τ
(l)
k of the hypercubic group

H(4) (for the notation see, e.g., [18]). Here l denotes the
dimension of the representation and k labels inequivalent
representations of the same dimension. In addition our op-
erators will be chosen such that they have definite charge
conjugation parity C.
Using clover fermions, quark–antiquark operators with

one covariant derivative have been discussed in [19] for for-
ward matrix elements. Because of the constraints imposed
by charge conjugation invariance no additional mixing has
to be considered in non-forward matrix elements and the
renormalisation constants given there can be taken over
to the case at hand. We will present them again for com-
pleteness and add the corresponding results for operators
involving [γµ, γν ], which were not considered in [19].
In [14] the renormalisation procedure for the case of

non-vanishing momentum transfer has been discussed in
detail. We will not repeat this discussion here. The matrix
of renormalisation and mixing coefficients Zij(aµ) relat-
ing regularised lattice vertex functions ΓLj (p

′, p, a, gR) and

MS renormalised vertex functions ΓRi (p
′, p, µ, gR) is de-

fined such that

ΓRi (p
′, p, µ, gR) = Z

−1
ψ (aµ)

N∑

j=1

Zij(aµ)Γ
L
j (p

′, p, a, gR) ,

(6)

with the quark wave function renormalisation constantZψ.
Here p (p′) denotes the momentum of the incoming (outgo-
ing) quark, the renormalisation scale is µ, the renormalised
coupling is denoted by gR, and N is the number of opera-
tors which mix in the one-loop approximation.

2 Operators and mixing

We consider operators with up to two covariant symmet-

ric lattice derivatives
↔
D =

→
D−

←
D and external ordinary

derivatives ∂. In the operator symbols, the derivatives are
indicated by superscriptsD and ∂. Note that matrix elem-
ents of operators which are ordinary derivatives of other
operators are simply given by the matrix elements of these
other operators multiplied by the appropriate product of
components of the momentum transfer.
The quark–antiquark operators with one derivative are

given by

ODµν =−
i

2
ψ̄γµ

↔
Dνψ , (7)

O5,Dµν =−
i

2
ψ̄γµγ5

↔
Dνψ , (8)

OT,Dµνω =−
i

2
ψ̄[γµ, γν ]

↔
Dωψ , (9)

OT,∂µνω =−
i

2
∂ω
(
ψ̄[γµ, γν ]ψ

)
. (10)

Operators such as (9) involving [γµ, γν ] are of interest
for tensor GPDs as well as for transversity and we call
them transversity operators. They are antisymmetric in
the indices µ and ν. For non-chiral fermions, operators (9)
and (10) contribute as lower-dimensional operators to mix-
ing in certain operators which determine second moments
of GPDs.
As operators with two derivatives we consider

ODDµνω =−
1

4
ψ̄γµ

↔
Dν
↔
Dωψ ,

O∂Dµνω =−
1

4
∂ν

(
ψ̄γµ

↔
Dωψ

)
,

O∂∂µνω =−
1

4
∂ν∂ω

(
ψ̄γµψ

)
(11)

and

O5,DDµνω =−
1

4
ψ̄γµγ5

↔
Dν
↔
Dωψ ,

O5,∂Dµνω =−
1

4
∂ν

(
ψ̄γµγ5

↔
Dωψ

)
,

O5,∂∂µνω =−
1

4
∂ν∂ω

(
ψ̄γµγ5ψ

)
. (12)
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We include here also transversity operators with two
derivatives:

OT,DDµνωσ =−
1

4
ψ̄[γµ, γν ]

↔
Dω

↔
Dσψ ,

OT,∂∂µνωσ =−
1

4
∂ω∂σ

(
ψ̄[γµ, γν ]ψ

)
. (13)

A detailed description of the operators with two deriva-
tives, their representations and potential mixings is given
in [14]. To define the various operators we use the following
short-hand notation:

O···{ν1ν2} =
1

2
(O···ν1ν2+O···ν2ν1) , (14)

O{ν1ν2ν3} =
1

6
(Oν1ν2ν3+Oν1ν3ν2 +Oν2ν1ν3+Oν2ν3ν1

+Oν3ν1ν2+Oν3ν2ν1) , (15)

O‖ν1ν2ν3‖ =Oν1ν2ν3 −Oν1ν3ν2+Oν3ν1ν2 −Oν3ν2ν1
−2Oν2ν3ν1+2Oν2ν1ν3 , (16)

O〈〈ν1ν2ν3〉〉 =Oν1ν2ν3 +Oν1ν3ν2−Oν3ν1ν2 −Oν3ν2ν1 .
(17)

For the first moments we choose the representations
and operators (for a more detailed discussion of the trans-
formation under H(4) see [18]) as in Table 1.
All operators in Table 1 are multiplicatively renormalis-

able. These representations exhaust all possibilities for the
twist-2 sector in the continuum. Note that in [16] we have

erroneously assigned τ
(8)
1 and C =−1 to an operator be-

longing to τ
(8)
1 , C =+1.

Let us now turn to the second moments and the corres-
ponding twist-2 operators.
First, in the unpolarised case we consider the following

sets of mixing operators.

τ
(4)
2 , C =−1:

We have

ODD{124},O
∂∂
{124} . (18)

Table 1. Representations and operators chosen for the first
moments

Operator Representation C

OD{14} τ
(6)
3 +1

OD44−
1
3

(
OD11+O

D
22+O

D
33

)
τ
(3)
1 +1

O5,D{14} τ
(6)
4 −1

O5,D44 −
1
3

(
O5,D11 +O

5,D
22 +O

5,D
33

)
τ
(3)
4 −1

OT,D〈〈124〉〉 τ
(8)
2 +1

OT,D〈〈122〉〉−O
T,D
〈〈133〉〉 τ

(8)
1 +1

τ
(8)
1 , C =−1:

Now we have

O1 =O
DD
{114}−

1

2

(
ODD{224}+O

DD
{334}

)
,

O2 =O
∂∂
{114}−

1

2

(
O∂∂{224}+O

∂∂
{334}

)
,

O3 =O
DD
〈〈114〉〉−

1

2

(
ODD〈〈224〉〉+O

DD
〈〈334〉〉

)
,

O4 =O
∂∂
〈〈114〉〉−

1

2

(
O∂∂〈〈224〉〉+O

∂∂
〈〈334〉〉

)
,

O5 =O
5,∂D
||213|| ,

O6 =O
5,∂D
〈〈213〉〉 ,

O7 =O
5,DD
||213|| ,

O8 =O
T,∂
411 −

1

2

(
OT,∂422 +O

T,∂
433

)
. (19)

There is one more representation, τ
(4)
1 , C =−1, giving

twist-2 operators. However, even in forward matrix elem-
ents the corresponding operatorsmix with operators whose
dimension is smaller by two. Therefore they are rather un-
suitable for numerical simulations andwill not be discussed
any further.
In the polarised case we consider the following.

τ
(4)
3 , C =+1:

We have

O5,DD{124},O
5,∂∂
{124} . (20)

τ
(8)
2 , C =+1:

We have

O51 =O
5,DD
{114}−

1

2

(
O5,DD{224}+O

5,DD
{334}

)
,

O52 =O
5,∂∂
{114}−

1

2

(
O5,∂∂{224}+O

5,∂∂
{334}

)
,

O53 =O
5,DD
〈〈114〉〉−

1

2

(
O5,DD〈〈224〉〉+O

5,DD
〈〈334〉〉

)
,

O54 =O
5,∂∂
〈〈114〉〉−

1

2

(
O5,∂∂〈〈224〉〉+O

5,∂∂
〈〈334〉〉

)
,

O55 =O
∂D
||213|| ,

O56 =O
∂D
〈〈213〉〉 ,

O57 =O
DD
||213|| ,

O58 =O
T,D
123 −2O

T,D
231 −O

T,D
132 . (21)

Again, there is one more representation giving twist-2
operators. Here it is τ

(4)
4 , C =+1, but the corresponding

operators suffer from similar mixing problems as the oper-
ators with τ

(4)
1 , C =−1 in the unpolarised case and will be

omitted in the following.
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τ
(3)
2 , C =−1:

Here

OT1 =O
T,DD
4{123},O

T
2 =O

T,∂∂
4{123} . (22)

τ
(3)
3 , C =−1:

In this case

OT3 =−O
T,DD
1{133}+O

T,DD
1{144}−O

T,DD
2{233}+O

T,DD
2{244}−2O

T,DD
3{344} ,

OT4 =−O
T,∂∂
1{133}+O

T,∂∂
1{144}−O

T,∂∂
2{233}+O

T,∂∂
2{244}−2O

T,∂∂
3{344} .

(23)

τ
(6)
2 , C =−1:

We have

OT5 =O
T,DD
13{32}+O

T,DD
23{31}−O

T,DD
14{42}−O

T,DD
24{41} ,

OT6 =O
T,∂∂
13{32}+O

T,∂∂
23{31}−O

T,∂∂
14{42}−O

T,∂∂
24{41} . (24)

The representations (22), (23) and (24) exhaust all pos-
sibilities for transversity operators of twist 2 which have
a mixing matrix of size 2×2 only. Other representations
have more complicated mixing patterns.

3 One-loop calculation

We calculate the matrix elements of the operators in one-
loop lattice perturbation theory in the infinite volume
limit following Kawai et al. [20]. Details of the compu-
tational procedure, in particular the Feynman rules, are
given in [14].

3.1 First moment

Since mixing is absent we need no matrix indices for the
renormalisation constants and use the general form

Z(aµ) = 1−
g2RCF

16π2
(
γ ln(a2µ2)+B(csw)

)
, (25)

where the finite piece B depends on csw and the (one-loop)
anomalous dimension γ is given by

γ =

{
8/3 for τ

(6)
3 , τ

(3)
1 , τ

(6)
4 , τ

(3)
4 ,

2 for τ
(8)
2 , τ

(8)
1 .

(26)

For the operators in Table 1 we have (results for τ
(6)
3 , τ

(3)
1 ,

τ
(6)
4 and τ

(3)
4 are taken from [19]) the expressions of Table 2.

Table 2. Values of B(csw) for representations of Table 1

Representation B(csw)

τ
(6)
3 1.27959−3.87297csw −0.67826c

2
sw

τ
(3)
1 2.56184−3.96980csw −1.03973c

2
sw

τ
(6)
4 0.34512−1.35931csw −1.89255c

2
sw

τ
(3)
4 0.16738−1.24953csw −1.99804c2sw

τ
(8)
2 13.16895+2.67533csw −1.49375c

2
sw

τ
(8)
1 12.80396+2.62368csw −1.42975c

2
sw

3.2 Second moment

We write the matrix of renormalisation constants in the
generic form

Z
(m)
ij (aµ) = δij−

g2RCF

16π2

(
γij ln(a

2µ2)+B
(m)
ij (csw)

)
,

(27)

with1

B
(m)
ij (csw) =B

(0,m)
ij +B

(1,m)
ij csw+B

(2,m)
ij c2sw . (28)

The superscript (m) with m = I, II distinguishes the re-
alisations I and II of the covariant derivatives, which are
explained in Appendix A of [14]. In the first case the mo-
mentum transfer “acts” at the position x associated with
the operator, where we define for one covariant derivative

O(x) =

(
ψ̄
↔
Dµψ

)
(x)

=
1

2a

(
ψ̄(x)Ux,µψ(x+aµ̂)− ψ̄(x)U

†
x−aµ̂,µψ(x−aµ̂)

+ ψ̄(x−aµ̂)Ux−aµ̂,µψ(x)− ψ̄(x+aµ̂)U
†
x,µψ(x)

)
.

(29)

We have set the Dirac matrix in the operator equal to the
unit matrix for simplicity. Realisation I leads to

(
ψ̄
↔
Dµψ

)(I)
(q) =

1

2a

∑

x

[
ψ̄(x)Ux,µψ(x+aµ̂)

− ψ̄(x+aµ̂)U†x,µψ(x)
] [
eiqx+eiq(x+aµ̂)

]
.

(30)

Alternatively (realisation II), q can be applied at the point
half way between the ψ̄ and ψ fields:

(
ψ̄
↔
Dµψ

)(II)
(q) =

1

a

∑

x

[
ψ̄(x)Ux,µψ(x+aµ̂)

− ψ̄(x+aµ̂)U†x,µψ(x)
]
eiq(x+aµ̂/2) .

(31)

1 B
(0,m)
ij has been denoted by c

(m)
ij in [14].
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In the case of two covariant derivatives we have for realisa-
tion II
(
ψ̄
↔
Dµ

↔
Dνψ

)(II)
(q)

=
1

a2

∑

x

(
ψ̄(x)Ux,µUx+aµ̂,νψ(x+aµ̂+aν̂)

− ψ̄(x+aν̂)Ux+aν̂,µU
†
x+aµ̂,νψ(x+aµ̂)

− ψ̄(x+aµ̂)U†x,µUx,νψ(x+aν̂)

+ ψ̄(x+aµ̂+aν̂)U†x+aν̂,µU
†
x,νψ(x)

)
eiq(x+aµ̂/2+aν̂/2) ,

(32)

and realisation I is obtained from (32) as

(
ψ̄
↔
Dµ

↔
Dνψ

)(I)
(q) = cos

(aqµ
2

)
cos
(aqν
2

)

×

(
ψ̄
↔
Dµ

↔
Dνψ

)(II)
(q) . (33)

We get the following results.

ODD{124}

(
τ
(4)
2 , C =−1

)
:

In this case we have the mixing operators (18). The corres-
ponding 2×2 mixing matrices are

γ =

(
25
6 −

5
6

0 0

)
, (34)

B(0,I,II) =

(
−11.56318 0.02414

0 20.61780

)
, (35)

B(1,I,II) =

(
2.89800 −0.25529
0 4.74556

)
, (36)

B(2,I,II) =

(
−0.98387 −0.01557
0 −0.54317

)
. (37)

The matrix B(I,II) shows a rather small coefficient for the
mixing between the operators ODD{124} and O

∂∂
{124}. Thus it

may be justified to neglect the mixing in practical applica-
tions, where µ= 1/a.

O1
(
τ
(8)
1 , C =−1

)
:

The operators mixing with O1 are given in (19). First we
consider the operators of the same dimension O1, . . . ,O7.
To one-loop accuracy the operatorO7 does not contribute,
because its Born term vanishes, and we have to consider
the following mixing set:

{O1,O2,O3,O4,O5,O6} . (38)

The anomalous dimension matrix is

γ =

⎛

⎜⎜⎜⎜⎜⎝

25
6 −

5
6 0 0 0 0

0 0 0 0 0 0
0 0 7

6 −
5
6 1 − 32

0 0 0 0 0 0
0 0 0 0 2 −2
0 0 0 0 − 23

2
3

⎞

⎟⎟⎟⎟⎟⎠
, (39)

and the finite parts of the mixing matrix are given by (in
doublets the upper number belongs to type I, the lower to
type II of the realisation of the lattice covariant derivative)

B(0,I,II)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−12.12740

⎛
⎜⎝
1.49127

−2.73669

⎞
⎟⎠ 0.36848

⎛
⎜⎝
−0.41595

0.99336

⎞
⎟⎠ 0.01562 0.14983

0 20.61780 0 0 0 0

3.30605

⎛
⎜⎝
−8.01456

18.18411

⎞
⎟⎠ −14.85157

⎛
⎜⎝
4.43061

−4.30228

⎞
⎟⎠ −0.92850 0.73802

0 0 0 20.61780 0 0

0 3.26440 0 0 0.35008 0.01491

0 3.26440 0 0 0.00497 0.36003

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(40)

B(1,I,II)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.92169

⎛
⎜⎝
−0.21269

−0.68643

⎞
⎟⎠ −0.03276

⎛
⎜⎝
0.01492

0.17283

⎞
⎟⎠ −0.01878 0.05696

0 4.74556 0 0 0 0

0.33335

⎛
⎜⎝
−0.76570

−0.05510

⎞
⎟⎠ 2.15228

⎛
⎜⎝
1.20652

0.96966

⎞
⎟⎠ −1.75814 2.29837

0 0 0 4.74556 0 0

0 −1.44106 0 0 1.64790 0.86576

0 −1.44106 0 0 0.28859 2.22507

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(41)

B(2,I,II)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.98166

⎛
⎜⎝
−0.07815

−0.10117

⎞
⎟⎠ −0.02914

⎛
⎜⎝
0.03475

0.04243

⎞
⎟⎠ −0.00999 0.00688

0 −0.54317 0 0 0 0

0.37050

⎛
⎜⎝
−0.55068

0.21545

⎞
⎟⎠ −1.70741

⎛
⎜⎝
0.37132

0.11594

⎞
⎟⎠ −0.44295 0.10328

0 0 0 −0.54317 0 0

0 1.41570 0 0 −1.70334 0.56763

0 1.41570 0 0 0.18921 −1.32493

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(42)

The matrices B(k,I,II) show sizeable coefficients for the
mixing ofO1 with other operators, especially with O2 con-
taining two external ordinary derivatives.
There is also a possible mixing between O1 and the

lower-dimensional operator O8 in (19). Indeed, we find in
the one-loop approximation that the vertex function of O1
contains a term ∝ 1/a:

O1| 1
a−part

=
g2RCF

16π2
(
−0.51771+0.08325csw−0.00983 c

2
sw

)

×
1

a
OBorn8 . (43)

This mixing leads to a contribution which diverges like
the inverse lattice spacing in the continuum limit. Thus
the perturbative calculation of the mixing coefficient is not
reliable and the operator O8 has to be subtracted non-
perturbatively from the operatorO1.

O5,DD{124}

(
τ
(4)
3 , C =+1

)
:

In this case we have to consider the operators in (20). The
anomalous dimension matrix is given by (34), the finite
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contributions are collected in the matrices

B(0,I,II) =

(
−12.11715 0.16673

0 15.79628

)
, (44)

B(1,I,II) =

(
1.51925 −0.00505
0 −0.24783

)
, (45)

B(2,I,II) =

(
−1.71846 0.00711
0 −2.25137

)
. (46)

As in the case of the operator ODD{124} above, the mixing
coefficient is rather small.

O51

(
τ
(8)
2 , C =+1

)
:

First we discuss the mixing of operators of the same dimen-
sion in (21). The set of contributing operators is found to
be

{O51,O
5
2,O

5
3,O

5
4,O

5
5,O

5
6} . (47)

As in the case of the operatorO1, one operator – hereO57 –
does not contribute to mixing in one-loop order. The finite
contributions are

B(0,I,II)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−12.86094

⎛
⎜⎝
−2.06532

1.48943

⎞
⎟⎠ 0.34900

⎛
⎜⎝
0.85381

−0.33110

⎞
⎟⎠ 0.05113 0.05942

0 15.79628 0 0 0 0

3.42196

⎛
⎜⎝
15.82073

−7.30020

⎞
⎟⎠ −15.35920

⎛
⎜⎝
−5.16392

2.54306

⎞
⎟⎠ 0.17014 −0.94314

0 0 0 15.79628 0 0

0 −8.91237 0 0 0.95969 −0.95969

0 −8.91237 0 0 −0.31990 0.31990

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(48)

B(1,I,II)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.49316

⎛
⎜⎝
−0.03027

0.17480

⎞
⎟⎠ −0.00750

⎛
⎜⎝
0.03022

−0.09858

⎞
⎟⎠ 0.01290 −0.03622

0 −0.24783 0 0 0 0

−0.09099

⎛
⎜⎝
0.99704

−1.07971

⎞
⎟⎠ 2.30129

⎛
⎜⎝
−1.25511

−0.56286

⎞
⎟⎠ 0.13420 0.48232

0 0 0 −0.24783 0 0

0 −13.26724 0 0 3.27954 −1.78029

0 −13.26724 0 0 −0.59343 2.09268

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(49)

B(2,I,II)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.68673

⎛
⎜⎝
0.03501

0.19704

⎞
⎟⎠ −0.00612

⎛
⎜⎝
−0.01275

−0.06677

⎞
⎟⎠ 0.01000 −0.00692

0 −2.25137 0 0 0 0

0.16581

⎛
⎜⎝
0.28263

0.13256

⎞
⎟⎠ −1.36546

⎛
⎜⎝
−0.30614

−0.25600

⎞
⎟⎠ 0.44299 −0.10322

0 0 0 −2.25137 0 0

0 −1.41570 0 0 −0.97445 −0.88857

0 −1.41570 0 0 −0.29619 −1.56683

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(50)

The anomalous dimension matrix is the same as for the
operators without γ5; see (39). Again, some of the mixing

coefficients are non-negligible. The mixing betweenO51 and
O53 is present also in the forward case.
We also find mixing with a lower-dimensional operator,

in this case it is the operatorO58 in (21). The corresponding
contribution in the vertex function ofO51 reads

O51
∣∣
1
a−part

=−
g2RCF

16π2
(
0.25231+0.02507csw+0.01046c

2
sw

)

×
1

a
O5,Born8 . (51)

OT1

(
τ
(3)
2 , C =−1

)
:

For the operators (22) the matrix of anomalous dimensions
is given by

γ =

(
13
3 −

2
3

0 1

)
, (52)

and the finite contributions are

B(0,I,II) =

(
−11.54826 0.21894

0 17.01808

)
, (53)

B(1,I,II) =

(
2.41077 0.05383
0 3.91333

)
, (54)

B(2,I,II) =

(
−1.51175 −0.00614
0 −1.97230

)
. (55)

OT3

(
τ
(3)
3 , C =−1

)
:

The operators (23) have the same anomalous dimension
matrix, (52), as the previous case. For the finite pieces we
obtain

B(0,I,II) =

(
−11.86877 0.27533

0 17.01808

)
, (56)

B(1,I,II) =

(
2.30651 0.01831
0 3.91333

)
, (57)

B(2,I,II) =

(
−1.34908 0.01726

0 −1.97230

)
. (58)

OT5

(
τ
(6)
2 , C =−1

)
:

We find for the case (24) the finite mixing contributions

B(0,I,II) =

(
−11.74773 0.23797

0 17.01808

)
, (59)

B(1,I,II) =

(
2.36201 0.04490
0 3.91333

)
, (60)

B(2,I,II) =

(
−1.45084 0.00898
0 −1.97230

)
, (61)

with the anomalous dimension matrix (52).
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4 Tadpole improvement

It is well known that many results of (naive) lattice per-
turbation theory do not agree very well with their coun-
terparts determined from Monte Carlo calculations. One
main reason for these discrepancies is the appearance of
gluon tadpoles, which are typical lattice artefacts. They
turn the bare coupling g into a poor expansion parameter.
As a remedy the so-called tadpole (or mean field) improve-
ment has been proposed [21], a rearrangement of the per-
turbative series making use of the variable u0, the fourth
root of the measured value of the plaquette,

u0 =

〈
1

Nc
TrU�

〉 1
4

. (62)

Its value depends on the coupling g2 = 6/β where it has
been measured.
In case of mixing the tadpole improvement works as fol-

lows. Scaling the link variables Uµ with u0

Uµ(x) = u0

(
Uµ(x)

u0

)
= u0Uµ(x) (63)

one finds an expression for the vertex function Γj of an op-
eratorOj containing nj covariant derivatives which is of the
form

Γj(Uµ(x)) = u
nj
0 Γj(Uµ(x)) . (64)

Γj(Uµ(x)) = u
−nj
0 Γj(Uµ(x)) is expected to have a better

converging perturbative expansion, which is obtained by
inserting the expansions of u

−nj
0 and Γj(Uµ(x)). To one-

loop accuracy, u0 is given by

u0 = 1−
g2CF

16π2
π2+O(g4) . (65)

Note that at the one-loop level we do not have to dis-
tinguish between g and gR in the perturbative expres-
sions. The exponent of u0 depends on j because in gen-
eral the mixing operators have different numbers of covari-
ant derivatives (see, e.g., (18) or (19)). An external ordi-
nary derivative (∂) does not provide a factor of u0. Taking
into account the mean field value for the wave function
renormalisation constant for massless Wilson and clover
fermions,

ZMFψ = u0 , (66)

the mean fieldZ factor for each operatorOj contributing to
the mixing reads

ZMFj = u
1−nj
0 , (67)

and the tadpole improved matrix of renormalisation con-
stants is given by

ZTIij = Zij
ZMFj

ZMF,pertj

= u
1−nj
0

(
1−
g2CF

16π2
(nj−1)π

2+O(g4)

)
Zij .

(68)

Additionally, we replace the parameters g and csw by their
“boosted” counterparts:

g2TI ≡ g
2u−40 , c

TI
sw ≡ cswu

3
0 . (69)

Combining (27), (68) and (69) we obtain for the tadpole
improved matrix in one-loop order

Z
TI,(m)
ij = u

1−nj
0

(
δij−

g2TICF

16π2

(
γij ln(a

2µ2)

+B
(m)
ij (c

TI
sw)+ (nj−1)π

2δij

))

≡ u
1−nj
0

(
δij−

g2TICF

16π2

(
γij ln(a

2µ2)

+B
TI,(m)
ij (cTIsw)

))
. (70)

Let us exemplify the impact of tadpole improvement in
some typical cases.We choose µ= 1/a, csw = 1+O(g

2) and
u0 = 0.8778 corresponding to quenched calculations at β =
6. For operators with one covariant derivative the tadpole
improvement procedure is rather simple. Because n1 = 1
the only effect consists in replacing in (25) and Table 2 csw
by cTIsw and g by gTI. For the operators belonging to the

representation τ
(6)
3 , e.g., we get

Z = 1.028 −→ ZTI = 1.023 . (71)

The operators for the second moments of GPDs are
a bit more involved. First we consider the simple mixing
O5,DD{124}↔O

5,∂∂
{124}; see (20). Without tadpole improvement

we obtain the mixing matrix of renormalisation constants
as

Z =

(
1.10399 −0.00143
0 0.88773

)
. (72)

The tadpole improved result is

ZTI =

(
1.17171 −0.00208
0 0.81876

)
. (73)

It is instructive to compare the one-loop corrections for
the renormalisation constants, i.e. B

(m)
ij (csw) for the unim-

proved case (27) andB
TI,(m)
ij (cTIsw) for the tadpole improved

case (70). With the parameters given above we get for the
operators (20)

B =

(
−12.31636 0.16879

0 13.29708

)
(74)

and

BTI =

(
−2.00613 0.16657
0 4.72909

)
. (75)

Equations (74) and (75) show that the one-loop corrections
on the diagonal have been reduced significantly. This is in
accordance with the aims of tadpole improvement.
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The same procedure can be applied to the more compli-
cated set O1, . . . ,O6 (τ

(8)
1 , C = −1) from (19). We obtain

for the unimproved case the mixing matrix of renormalisa-
tion constants (lattice covariant derivative typem= I) as

Z(I)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.08602 −0.01014 −0.00259 0.00309 0.00011 −0.00180

0 0.79043 0 0 0 0

−0.03386 0.07879 1.12164 −0.05073 0.02642 −0.02651

0 0 0 0.79043 0 0

0 −0.02735 0 0 0.99751 −0.01223

0 −0.02735 0 0 −0.00408 0.98936

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(76)

The tadpole improved result reads

ZTI,(I)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.15105 −0.01637 −0.00539 0.00487 0.00002 −0.00272

0 0.70666 0 0 0 0

−0.05996 0.10966 1.20899 −0.06762 0.03300 −0.03328

0 0 0 0.70666 0 0

0 −0.03667 0 0 0.99025 −0.01223

0 −0.03667 0 0 −0.00408 0.98210

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(77)

The renormalisation and mixing matrices for all other
cases can be treated analogously. They show a similar be-
haviour: The 2× 2 matrices exhibit rather small mixing
coefficients, the other 6×6 problem (21) is almost identical
to the example discussed above.

5 Summary

In this paper we have considered quark–antiquark oper-
ators needed for the computation of the first two mo-
ments of GPDs and meson distribution amplitudes within
the framework of lattice QCD. In one-loop lattice pertur-
bation theory we have calculated the non-forward quark
matrix elements of these operators employing clover im-
proved Wilson fermions and Wilson’s plaquette action for
the gauge fields. From the results we have evaluated the
matrices of renormalisation and mixing coefficients in the
MS-scheme.
For the operators with only one derivative (relevant for

the first moments) we could take over the numbers ob-
tained for the first moments of ordinary parton distribu-
tions. The results for the second moments generalise the
numbers calculated with Wilson fermions [14]. The gen-
eral conclusions concerning the mixing properties remain
unchanged.
If there is only mixing between one operator with two

covariant derivativesD and one operator with two external
derivatives ∂, the mixing coefficient turns out to be rather
small. In the two cases (19) and (21) with eight potentially
mixing operators the mixing effects are more severe. More-
over, taking O1 from (19) or O51 from (21) as the operator
to be measured in a numerical simulation, we find in each
case mixing with a lower-dimensional operator (cf. (43)

and (51)). This could lead to difficulties, because 1/a ef-
fects are hard to get under control. For overlap fermions,
however, these mixings with lower-dimensional operators
of different chirality would be absent.
Additionally, we have discussed tadpole improvement

with special attention to mixing operators. We have given
the general prescription for mean field improvement and
have shown how it works for selected examples.
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